A Fast Dual Projected Newton Method for l1-Regularized Least Squares
نویسندگان
چکیده
L1-regularized least squares, with the ability of discovering sparse representations, is quite prevalent in the field of machine learning, statistics and signal processing. In this paper, we propose a novel algorithm called Dual Projected Newton Method (DPNM) to solve the 1-regularized least squares problem. In DPNM, we first derive a new dual problem as a box constrained quadratic programming. Then, a projected Newton method is utilized to solve the dual problem, achieving a quadratic convergence rate. Moreover, we propose to utilize some practical techniques, thus it greatly reduces the computational cost and makes DPNM more efficient. Experimental results on six real-world data sets indicate that DPNM is very efficient for solving the 1-regularized least squares problem, by comparing it with state of the art methods.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملAn Interior-Point Method for Large-Scale l1-Regularized Least Squares
Recently, a lot of attention has been paid to l1 regularization based methods for sparse signal reconstruction (e.g., basis pursuit denoising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as l1-regularized least squares programs (LSPs), which can be reformulated as convex quadratic progr...
متن کاملAn Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization
Convex loss minimization with l1 regularization has been proposed as a promising method for feature selection in classification (e.g., l1-regularized logistic regression) and regression (e.g., l1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale l1-regularized convex loss minimization problems that uses a preconditioned conjugate gr...
متن کامل